### Area and Perimeter

Try some of the examples below and if you need any help, just look at the solution I have written. Cheers ! =) .

\(\\[1pt]\)

EXAMPLE:

\({\small 1.\enspace}\) In the figure below,

\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 2.\enspace}\) In the figure below,

\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 3.\enspace}\) If rectangle

\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 4.\enspace}\) In the figure below,

\({\small\hspace{1.2em}\left(a\right).\hspace{0.8em}}\) What fraction of the parallelogram is the pink area?

\({\small\hspace{1.2em}\left(b\right).\hspace{0.8em}}\) If the pink area is a rectangle, find the ratio of

\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 5.\enspace}\)

\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 6.\enspace}\)

\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 7.\enspace}\) Given that

\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 8.\enspace}\) The shape shown below is bounded by the arc of a three-quarter circle of radius 1 cm and the arcs of two quadrants with radii 2 cm and 3 cm. Find the area of the shape.

\(\\[1pt]\)

\(\\[1pt]\)

*ABC*is an isosceles triangle, \({\small \angle {A} = 90^{\large{\circ}}}\) and*PQRS*is a square of side 1 cm. Find the area of \({\small \triangle ABC}\).\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 2.\enspace}\) In the figure below,

*ABEG*is a rectangle with*E*and*G*are the centres of the circles. If*BE*\(=\) 7 cm and the areas of the green regions*ABC*and*CDF*are equal, find*GE*.\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 3.\enspace}\) If rectangle

*ABCD*is three times as large as \({\small \triangle CDX}\) and four times as large as \({\small \triangle BCY}\), what fraction of the rectangle is coloured orange?\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 4.\enspace}\) In the figure below,

*ABCD*is a parallelogram.*M*and*N*are the midpoints of*AD*and*BC*respectively.\({\small\hspace{1.2em}\left(a\right).\hspace{0.8em}}\) What fraction of the parallelogram is the pink area?

\({\small\hspace{1.2em}\left(b\right).\hspace{0.8em}}\) If the pink area is a rectangle, find the ratio of

*AB*:*BC*.\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 5.\enspace}\)

*ABCD*is a rhombus.*E*and*F*are the midpoints of*AD*and*CD*respectively. What fraction of the rhombus is coloured yellow?\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 6.\enspace}\)

*OAB*is a quadrant of radius 7 cm.*OCA*and*OCB*are semicircles. Find the total area of the red region.\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 7.\enspace}\) Given that

*AB*:*BC*\(=\)*EF*:*FG*\(=\) 1 : 2,*CD*:*DE*\(=\) 2 : 3 and*ACEG*is a rectangle, find the ratio of the areas of parts*P*,*Q*,*R*and*S*.\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

\({\small 8.\enspace}\) The shape shown below is bounded by the arc of a three-quarter circle of radius 1 cm and the arcs of two quadrants with radii 2 cm and 3 cm. Find the area of the shape.

\(\\[1pt]\)

\(\\[1pt]\)

\(\\[1pt]\)

Comment is that i am not understand