9709/32/F/M/19 – Paper 32 Feb March 2019 No 10

Integration and Differentiation

Integration and Differentiation

Integration is an essential part of basic calculus. Algebra plays a very important part to become proficient in this topic.

I have compiled some of the questions that I have encountered during my Math tutoring classes. Do take your time to try the questions and learn from the solutions I have provided below. Cheers ! =) .

More Integration Exercises can be found here.


EXAMPLE:

\({\small 1.\enspace}\) 9709/32/F/M/17 – Paper 32 Feb March 2017 No 10
\(\\[1pt]\)
9709/32/F/M/17 – Paper 32 Feb March 2017 No 10
\(\\[1pt]\)
The diagram shows the curve \( \ {\small y \ = \ {(\ln x)}^{2} }\). The x-coordinate of the point P is equal to e, and the normal to the curve at P meets the x-axis at Q.
\(\\[1pt]\)
\({\small\hspace{1.2em}(\textrm{i}).\hspace{0.7em}}\) Find the x-coordinate of Q.
\(\\[1pt]\)
\({\small\hspace{1.2em}(\textrm{ii}).\hspace{0.7em}}\) Show that \({\small \displaystyle \int \ln x \ \mathrm{d}x \ = \ x \ln x \ – \ x \ + \ c }\), where c is a constant.
\(\\[1pt]\)
\({\small\hspace{1.2em}(\textrm{iii}).\hspace{0.5em}}\) Using integration by parts, or otherwise, find the exact value of the area of the shaded region between the curve, the x-axis and the normal PQ.

\(\\[1pt]\)
\({\small 2.\enspace}\) 9709/32/F/M/19 – Paper 32 Feb March 2019 No 10
\(\\[1pt]\)
9709/32/F/M/19 – Paper 32 Feb March 2019 No 10
\(\\[1pt]\)
The diagram shows the curve \( \ {\small y \ = \ {\sin}^{3} x \sqrt{(\cos x)} \ }\) for \( \ {\small 0 \leq x \leq \large{ \frac{1}{2}} \pi } \), and its maximum point M.
\(\\[1pt]\)
\({\small\hspace{1.2em}(\textrm{i}).\hspace{0.7em}}\) Using the substitution \({\small \ u \ = \ \cos x }\), find by integration the exact area of the shaded region bounded by the curve and the x-axis.
\(\\[1pt]\)
\({\small\hspace{1.2em}(\textrm{ii}).\hspace{0.7em}}\) Showing all your working, find the x-coordinate of M, giving your answer correct to 3 decimal places.

\(\\[1pt]\)
\({\small 3.\enspace}\) 9709/32/M/J/20 – Paper 32 May June 2020 No 9
\(\\[1pt]\)
9709/32/M/J/20 – Paper 32 May June 2020 No 9
\(\\[1pt]\)
The diagram shows the curves \( \ {\small \ y \ = \ \cos x \ }\) and \( \ {\small \ y \ = \ \large{ \frac{k}{1 \ + \ x} } }\), where k is a constant, for \( \ {\small \ 0 \leq x \leq \large{ \frac{1}{2}} \pi } \). The curves touch at the point where x = p.
\(\\[1pt]\)
\({\small\hspace{1.2em}(\textrm{a}).\hspace{0.8em}}\) Show that p satisfies the equation \( {\small \ \tan p \ = \ \large{ \frac{1}{1 \ + \ p} } }\).

\(\\[1pt]\)

\({\small 4.\enspace} \displaystyle \int_{1}^{a} \ln 2x \ \mathrm{d}x = 1.\) Find \({\small a} \).


\(\\[1pt]\)
\({\small 5.\enspace}\) Use the substitution \(u = \sin 4x\) to find the exact value of \(\displaystyle \int_{0}^{{\Large\frac{\pi}{24}}} \cos^{3} 4x \ \mathrm{d}x.\)

\(\\[1pt]\)
\({\small 6. \hspace{0.8em}(i).\hspace{0.8em}}\) Use the trapezium rule with 3 intervals to estimate the value of: \(\displaystyle \int_{{\Large\frac{\pi}{9}}}^{{\Large\frac{2\pi}{3}}} \csc x \ \mathrm{d}x\) giving your answer correct to 2 decimal places.
\(\\[1pt]\)
\({\small\hspace{1.2em}\left(ii\right).\hspace{0.8em}}\) Using a sketch of the graph of \(y = \csc x\), explain whether the trapezium rule gives an overestimate or an underestimate of the true value of the integral in part (i).

\(\\[1pt]\)
\({\small 7.\enspace}\) Solve these integrations.
\(\\[1pt]\)
\({\small\hspace{1.2em}\left(a\right).\hspace{0.8em}} \displaystyle \int_{0}^{\infty} \frac{1}{{x}^{2} \ + \ 4} \ \mathrm{d}x\)
\(\\[1pt]\)
\({\small\hspace{1.2em}\left(b\right).\hspace{0.8em}} \displaystyle \int_{0}^{3} \frac{1}{\sqrt{9 \ – \ {x}^{2}}} \ \mathrm{d}x\)
\(\\[1pt]\)
\({\small\hspace{1.2em}\left(c\right).\hspace{0.8em}} \displaystyle \int_{-\infty}^{\infty} \frac{1}{9{x}^{2} \ + \ 4} \ \mathrm{d}x\)
\(\\[1pt]\)
\({\small\hspace{1.2em}\left(d\right).\hspace{0.8em}} \displaystyle \int_{0}^{1} \frac{1}{\sqrt{x(1 \ – \ x)}} \ \mathrm{d}x\)
\(\\[1pt]\)
\({\small\hspace{1.2em}\left(e\right).\hspace{0.8em}} \displaystyle \int_{1}^{\infty} \frac{1}{{(1 \ + \ x^2)}^{{\large\frac{3}{2}}}} \ \mathrm{d}x\)
\(\\[1pt]\)
\({\small\hspace{1.2em}\left(f\right).\hspace{0.8em}} \displaystyle \int_{1}^{\infty} \frac{1}{x \sqrt{{x}^{2} \ – \ 1}} \ \mathrm{d}x\)

\(\\[1pt]\)
\({\small 8.\enspace}\) The diagram shows the curve \({\small y = {e}^{{\large – \frac{1}{2}x}} \ \sqrt{(1 \ + \ 2x)}}\) and its maximum point M. The shaded region between the curve and the axes is denoted by R.
\(\\[1pt]\)
Integration Example 5
\(\\[1pt]\)
\({\small \hspace{1.2em}(i). \enspace }\) Find the x-coordinate of M.
\(\\[1pt]\)
\({\small \hspace{1.2em}(ii). \enspace }\) Find by integration the volume of the solid obtained when R is rotated completely about the x-axis. Give your answer in terms of \({\small \pi}\) and e.

\(\\[1pt]\)


PRACTICE MORE WITH THESE QUESTIONS BELOW!

\({\small 1.\enspace}\) Find \(\displaystyle \int \frac{1}{x^2\sqrt{x^2 \ – \ 4}} \ \mathrm{d}x\) using the substitution \({\small x \ = \ 2 \sec \theta }\).

\({\small 2. \enspace}\) Find the exact value of \(\displaystyle \int_{1}^{e} x^4 \ \ln \ x \ \mathrm{d}x \).

\({\small 3. \enspace}\) Find the exact value of \(\displaystyle \int_{4}^{10} \frac{2x \ + \ 1}{(x \ – \ 3)^2} \ \mathrm{d}x \), giving your answer in the form of \({\small a \ + \ b \ \ln \ c}\), where a, b and c are integers.

\({\small 4. \enspace}\) Find the exact value of \(\displaystyle \int_{1}^{4} \frac{\ln \ x}{\sqrt{x}} \ \mathrm{d}x \).

\({\small 5. \enspace}\) Find the exact value of

\({\small\hspace{1.2em}\left(a\right).\hspace{0.8em}} \displaystyle \int_{0}^{\infty} {e}^{1 \ – \ 2x} \ \mathrm{d}x\)

\({\small\hspace{1.2em}\left(b\right).\hspace{0.8em}} \displaystyle \int_{-1}^{0} \big(
2 \ + \ \frac{1}{x \ – \ 1} \big) \ \mathrm{d}x\)

\({\small\hspace{1.2em}\left(c\right).\hspace{0.8em}} \displaystyle \int_{{\large\frac{\pi}{6}}}^{{\large \frac{\pi}{4}}} \cot x \ \mathrm{d}x\)

\({\small\hspace{1.2em}\left(d\right).\hspace{0.8em}}\) Using your result in (c), find also the exact value of \(\displaystyle \int_{{\large\frac{\pi}{6}}}^{{\large \frac{\pi}{4}}} \csc 2x \ \mathrm{d}x\) by using the identity \(\cot x \ – \ \cot 2x \ \equiv \ \csc 2x\).

\({\small 6. \enspace}\) The diagram shows the part of the curve \({\small y \ = \ f(x)}\), where \({\small f(x) \ = \ p \ – \ {e}^{x} }\) and p is a constant. The curve crosses the y-axis at (0, 2).

Integration Practice 6

\({\small\hspace{1.2em}\left(a\right).\hspace{0.8em}}\) Find the value of p.

\({\small\hspace{1.2em}\left(b\right).\hspace{0.8em}}\) Find the coordinates of the point where the curve crosses the x-axis.

\({\small\hspace{1.2em}\left(c\right).\hspace{0.8em}}\) What is the area of the shaded region R?

\({\small 7. \enspace}\) Integrate the following:

\({\small\hspace{1.2em}\left(a\right).\hspace{0.8em}} \displaystyle \int \frac{x^2}{1 \ + \ {x}^{3}} \ \mathrm{d}x\)

\({\small\hspace{1.2em}\left(b\right).\hspace{0.8em}} \displaystyle \int x^4 \ \sin (x^5 \ + \ 2) \ \mathrm{d}x\)

\({\small\hspace{1.2em}\left(c\right).\hspace{0.8em}} \displaystyle \int e^{x} \ \sin x \ \mathrm{d}x\)

\({\small 8. \enspace}\) Let \(I \ = \ \displaystyle \int_{0}^{1} {\large \frac{\sqrt{x}}{2 \ – \ \sqrt{x}}} \ \mathrm{d}x\).

\({\small\hspace{1.2em}\left(a\right).\hspace{0.8em}}\) Using the substitution \({\small u = \ 2 \ – \ \sqrt{x}}\), show that \(I \ = \ \displaystyle \int_{1}^{2} {\large \frac{2 {(2 \ – \ u)}^{2}}{u}} \ \mathrm{d}u\).

\({\small\hspace{1.2em}\left(b\right).\hspace{0.8em}}\) Hence show that \(I \ = \ 8 \ \ln 2 \ – \ 5 \).

\({\small 9. \enspace}\) The constant a is such that

\({\small\hspace{3em}} \displaystyle \int_{0}^{a} x{e}^{{\large \frac{1}{2}x}} \mathrm{d}x \ = \ 6 \).

Show that a satisfies the equation

\({\small\hspace{3em}} a \ = \ 2 \ + \ {e}^{{\large -\frac{1}{2}a}}\).

\({\small 10. \enspace}\) Use the substitution \({\small u \ = \ 1 \ + \ 3 \ \tan x }\) to find the exact value of

\({\small\hspace{3em}} \ \displaystyle \int_{0}^{{\large\frac{\pi}{4}}} {\large \frac{\sqrt{1 \ + \ 3 \ \tan x}}{{\cos}^{2}x}} \ \mathrm{d}x\).


As always, if you have any particular questions to discuss, leave it in the comment section below. Cheers =) .

Any questions? Just ask! =)

Your email address will not be published.